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Abstract
Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of
this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the
genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls,
testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide
polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different
neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association
with dyslexia status in our sample. We observed statistically significant (p < 2.8 × 10−6) enrichment of associations at the gene
level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We
estimated an SNP-based heritability of 20–25% for DD, and observed significant associations of dyslexia risk with PGSs for
attention deficit hyperactivity disorder (at pT= 0.05 in the training GWAS: OR= 1.23[1.16; 1.30] per standard deviation
increase; p = 8 × 10−13), bipolar disorder (1.53[1.44; 1.63]; p= 1 × 10−43), schizophrenia (1.36[1.28; 1.45]; p= 4 × 10−22),
psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p= 3 × 10−12), cortical thickness of the transverse temporal gyrus
(0.90[0.86; 0.96]; p= 5 × 10−4), educational attainment (0.86[0.82; 0.91]; p= 2 × 10−7), and intelligence (0.72[0.68; 0.76]; p=
9 × 10−29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic
overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed
the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.

Introduction

Developmental dyslexia (DD) is a specific learning dis-
order affecting the ability to read that is not better
accounted for by intellectual disabilities, uncorrected visual
or auditory acuity, other mental or neurological disorders,
or inadequate educational instruction [1]. People with
dyslexia show difficulties in accurate and/or fluent word
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recognition, decoding, spelling, and/or reading compre-
hension [2]. The prevalence of DD is reported to be around
5–10% among school-aged children, depending on the
criteria used for diagnosis [3]. DD tends to recur in families
[4, 5] and most twin studies have reported a heritability (h2)
between 40 and 60% [2, 6]. A similar range of heritability
has been reported for several cognitive skills representing/
underlying reading ability, such as word reading, spelling,
and phoneme awareness (h2 ~40–70%) [7–9]. Of note, a
large proportion of this heritability remains unexplained,
and DD shows a complex architecture, with multiple
genetic and environmental factors playing a role in its
aetiology [10].

Linkage and candidate gene association studies have
identified a small number of candidate susceptibility genes,
most of which have been associated not only with dyslexia,
but also with continuous interindividual variation in rele-
vant cognitive skills like word reading, spelling, and others
(as reviewed in [11–13]). The most robust candidate genes
identified so far include DYX1C1 (15q21) [14], DCDC2 and
KIAA0319 (6p22.3) [15–18], GCFC2 and MRPL19 (2p12)
[19], and ROBO1 (3p12.3-p12.3) [20–22]. DD and reading-
related cognitive traits have also been investigated via
genome-wide association studies (GWAS), which involve
analyses of many single-nucleotide polymorphisms (SNPs)
spread across the genome. A few such studies have been
reported, using either a case-control design [23–25] or a
continuous trait analysis approach [26–30]. However, only
two of these studies identified associations that met criteria
for genome-wide significance [27, 28]. The first was a
GWAS of multiple cognitive skills related to reading abil-
ity, which revealed a genome-wide significant association at
rs17663182 (MIR924HG; 18q12.2) with rapid automatized
naming (RAN), in nine cohorts of reading-impaired and
typically developing subjects of European ancestry (max-
imum N= 3468) [28]. More recently, in a north-American
cohort of non-European ancestry (N= 1331), Truong et al.
[27] identified a genome-wide significant multivariate
association of rs1555839 (10q23.31; upstream from the
RPL7P34 gene) with RAN and rapid alternating stimulus,
and replicated the association with RAN in an independent
cohort of European ancestry [27].

Here, we carried out a case-control GWAS meta-analysis
involving 2274 dyslexia cases and 6272 controls from nine
different countries that partly overlap with those from the
prior Gialluisi et al. study of continuous traits (≤2500
overlapping samples) [28]. We performed association test-
ing at the single variant, gene, and pathway level, and
estimated SNP-based heritability. Moreover, we analyzed
associations of polygenic scores (PGS) derived from large-
scale GWAS data from other related neuropsychiatric dis-
orders, as well as intelligence, educational attainment, and
cortical brain measures.

Subjects and methods

Datasets

The datasets involved in the present study were collected in
nine different populations of European ancestry, with six
different languages (see Table 1). Subsets have already been
tested for association with continuous reading-related traits
[28]. Ethical approval was obtained for each cohort at the
local level, and written informed consent was obtained for
all the participants or their parents.

Unrelated DD cases and controls with IQ in the normal
range were recruited in Austria (N= 374), Finland (N= 336),
France (N= 165), Germany (N= 1454), Hungary (N= 243),
The Netherlands (N= 311), and Switzerland (N= 67) (see
Table 1). DD cases were defined as participants showing low
performance on tests of word reading (standardized score
≤−1.25), with the exception of 148 German cases, which
were defined based on a ≥1.5 standard deviation discrepancy
between the observed and expected spelling score based on
their IQ (see [31, 32] and Supplementary methods). Controls
were defined as individuals with standardized word reading
scores >−0.85 [33, 34].

Samples from Austria, Germany, and Switzerland were
merged together into a single dataset (hereafter called AGS),
since they shared language and genetic ancestry [28]. Two
additional datasets were included in the study, made up of
native English speakers. One of them consisted of DD cases
selected from two sibling-based cohorts, namely the Colorado
Reading Disability Cohort [26, 35] and an independent cohort
from Oxford, UK [28, 36]. These cases were merged to form a
single case-control dataset with unscreened controls from the
Wellcome Trust Case Control Consortium 2 (WTCCC2) 1958
British birth cohort (WTCCC2_1958), a sample of sequential
live births in the UK during 1 week in 1958 [37]. The other
English-speaking dataset consisted of unrelated DD cases
recruited in Cardiff, UK and the WTCCC2 National Blood
Service (WTCCC2_NBS) cohort, a collection of subjects who
have donated blood to the UK blood service. These datasets,
hereafter called ENall1 (N= 3531) and ENall2 (N= 2947),
met the same word reading-based inclusion criteria as above
for cases, while controls were unscreened, as in other pro-
minent studies [38, 39].

Genotype quality control (QC) and imputation

Genotyping array platforms used for the different datasets
are reported in Table S1a. These included Illumina
HumanHap 300k, 550k, 660k, OmniExpress Human Cor-
eExome and BeadChips, and Illumina 1.2M chips. Geno-
type QC was carried out, as previously described [28], in
PLINK v1.90b3s [40] and QCTOOL v1.4 (see URLs).
Briefly, SNPs were excluded if they showed a variant call
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rate <98%, a minor allele frequency (MAF) <5%, or a
Hardy–Weinberg equilibrium (HWE) exact test p value
< 10−6. Samples showing a genotyping rate <98%, mis-
matches between genetic and pedigree-based sex, cryptic
relatedness (in datasets of unrelated subjects), or identity-
by-descent not corresponding to the available pedigree
information (in datasets including related cases) were also
discarded. Similarly, we discarded genetic ancestry outliers
detected in a multidimensional scaling (MDS) analysis of
pairwise genetic distance and samples with extreme
genome-wide heterozygosity values (see Table S1b).

For imputation, genotypes of autosomal SNPs were
aligned to the 1000 Genomes phase I v3 reference panel
(ALL populations, June 2014 release) [41] and pre-phased
using SHAPEIT v2 (r837) [42]. Imputation was then per-
formed using IMPUTE2 v2.3.2 [43] in 5Mb chunks with
500 kb buffers, filtering out variants that were mono-
morphic in the 1000 Genomes EUR (European) samples.
Chunks with <51 genotyped variants or concordance rates
<92% were fused with neighbouring chunks and re-
imputed. Finally, imputed variants (genotype probabilities)
were filtered for IMPUTE2 INFO metric ≥0.8, as well as
MAF and HWE thresholds as above. We re-evaluated
genetic ancestry and genome-wide heterozygosity outliers
after imputation and observed substantial concordance with
pre-imputation QC. After QC, 2274 dyslexia cases and
6272 controls were left for analysis (see Tables S1c, d for a
power computation).

Genetic association test and meta-analysis

After genotype QC and imputation, we tested autosomal
variant allelic dosages for association with case-control
status within each dataset. In all the datasets except ENall1,
we ran association tests through logistic regression in
PLINK, using the first ten genetic ancestry (MDS) com-
ponents as covariates. To account for the genetic relation-
ship among related subjects in ENall1, we modelled a
generalized linear mixed-effects model association test
through FastLMM v2.07 [44], using a genetic relationship
matrix as a random effect, while disabling normalization to
unit variance for tested SNPs. Then we combined the results
of the association tests in the different datasets through a
fixed-effects sample size-based meta-analysis in METAL
v25-03-2011 (“Stouffer” method) [45]. This was done in
order to overcome the heterogeneity of scales of the asso-
ciation tests used in the different datasets. The genome-wide
significance threshold was set to α= 5 × 10−8. To obtain an
estimate of the odds ratio (OR) for the top association
identified, we performed a Wald association test in the
ENall1 dataset through a logistic mixed model approach in
GMMAT [46], which was not possible to perform at the
genome-wide level due to the high computational loadTa
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implied. We then meta-analyzed the resulting association
statistics across datasets, through a fixed-effects inverse
variance-weighted method in METAL [45].

Gene- and pathway-based enrichment tests

We performed a gene-based association analysis on the
results of the GWAS meta-analysis in MAGMA v1.06 [47].
First, we assigned genetic variants to protein-coding genes
based on their position according to the NCBI 37.3 (hg19)
build, extending the region of annotation to 10 kb from the
3′-/5′-UTR (untranslated region). In total, 18,013 genes (out
of 19,427 genes available) included at least one variant that
passed internal QC and were thus tested for enrichment of
single-variant associations, using default settings. For this
analysis, we set a genome-wide significance threshold α=
2.8 × 10−6, correcting for 18,013 genes tested.

We used the results of the gene-based association ana-
lysis to carry out a pathway-based enrichment test for
associations with DD, through a competitive gene-set ana-
lysis in MAGMA v1.06. We tested for enrichment 1329
canonical pathways (i.e., classical representations of biolo-
gical processes compiled by domain experts) from the
Molecular Signatures Database website (MSigDB v5.2,
collection C2, subcollection CP; see URLs). To correct
enrichment statistics for testing of multiple pathways, we
used an adaptive permutation procedure with default set-
tings (up to a maximum of 10,000 permutations). Hence, in
this analysis we set the significance threshold to α= 0.05.

Estimation of heritability

We used the summary statistics from the DD case-control
GWAS to compute SNP-based heritability of the disorder,
through LD score regression [48, 49]. For this analysis, we
used only common SNPs tested in the GWAS and present
in the HapMap 3 reference panel [50], excluding the MHC
region, since these variants show a good imputation quality
(r2 > 0.9) in most studies. All the analyses presented below
were performed on these variants (1,025,494 SNPs), using
LD information based on the 1000 G phase 1 v3 EUR panel
(see URLs).

We first computed the proportion of genetic variance
explained by all SNPs mentioned above on the observed
scale, and then repeated the analysis using a liability threshold
model, i.e., assuming that the binary trait that we use is
determined by an unobserved normally distributed liability
threshold [48, 49]. This analysis requires specification of the
proportion of cases in the GWAS (27%), and the estimated
prevalence of the disorder in the reference population, which
has been reported to be 5–10% among school-aged children
[3]. Hence, we carried out the analysis using the limits of this
prevalence range, namely 0.05 and 0.10, respectively.

To extrapolate biological information from our GWAS
summary statistics, we computed partitioned heritability for
53 overlapping functional annotation categories identified in
the genome [51], irrespective of the cell types analyzed
(baseline model). These annotations include DNase I
hypersensitivity sites, coding regions, untranslated regions,
enhancers, promoters and several histone marks as defined by
different public resources (see “Results” section and [51] for
a complete list). Similarly, we carried out a stratified LD
score regression using only central nervous system (CNS)
cell-specific annotations of four histone marks—H3K4me1,
H3K4me3, H3K9ac, and H3K27ac—to identify a specific
enrichment of functional elements associated with transcrip-
tional activity in these cells. We performed this analysis both
for all the CNS cells pooled together and singularly for each
cell type available in brain tissues, while correcting for the
contribution of all functional annotation categories pre-
viously tested in the baseline model, as suggested by the
developer [51]. Thereby, we could identify the contribution
of common variants annotated to histone marks which are
specifically enriched in nervous cells. Finally, we computed
partitioned heritability for diverse sets of genes whose
expression is specifically enriched in 13 different brain
regions, based on RNA-seq data from the Genotype-Tissue
Expression portal (GTEx v6) [52, 53]. The brain regions
available included amygdala, anterior cingulate cortex, cau-
date nucleus, cerebellar hemispheres, cerebellum, cortex,
frontal cortex, hippocampus, hypothalamus, nucleus accum-
bens, putamen, spinal cord, and substantia nigra.

Polygenic score (PGS) analyses

Genetic liability to neuropsychiatric disorders, intelligence
and education

We investigated potential genetic links between dyslexia
and related and/or comorbid neuropsychiatric disorders,
including attention deficit hyperactivity disorder (ADHD)
[54–56], autism spectrum disorder (ASD) [57], major
depressive disorder (MDD) [58], bipolar disorder (BD)
[59], and schizophrenia (SCZ) [60], as well as with genetic
liability shared across different neuropsychiatric disorders,
including ADHD, ASD, BD, MDD, SCZ, anorexia nervosa,
obsessive-compulsive disorder and Tourette syndrome [61].
Moreover, we tested association with fluid intelligence [62]
and educational attainment (years of education completed,
EduYears) [63], which are phenotypically correlated with
reading ability [64, 65]. To this end, we performed a PGS
analysis in our sample using summary statistics available
from previous independent GWAS studies of the other traits
of interest (hereafter called training GWAS) [61–63,
66–70]. PGSs were computed with PRSice-2 v2.2.11 [71],
using only summary statistics based on samples of
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European ancestry in the training GWAS and quality con-
trolled variants in a random extraction of one individual per
family from our dyslexia (target) GWAS (MAF ≥ 5%; HWE
p ≥ 10−6; variant call rate ≥95%; N= 8456). We further
pruned SNPs through LD-clumping (pairwise r2 < 0.05
within sliding 300 kb windows) and removed those variants
with discordant coordinates/alleles between the training and
the target GWAS. We then computed average (default)
PGS using only variants with association p value < 0.05 in
the training GWAS (as in [28, 72, 73]), since this represents
a reasonable trade-off between goodness-of-fit of the
PGS and the risk of introducing noise in the model by
including genetic variants meeting more lenient association
thresholds. We then built generalized linear models (glm) of
dyslexia vs PGS adjusted for sex and genetic ancestry (10
MDS components) in the same set of unrelated subjects
used above (2184 cases and 6272 controls). To check for
robustness of our findings, we repeated the analysis at dif-
ferent association significance thresholds in each training
GWAS (with p < 5 × 10−8, 1 × 10−5, 0.001, 0.05, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0). A Bonferroni-
corrected significance threshold was set to α= 4.5 × 10−4

for this analysis, conservatively correcting for eight (six
binary neuropsychiatric and two continuous) training traits,
and 14 significance thresholds tested.

Polygenic scores of brain cortical measures

We carried out an exploratory analysis to test associations
with PGSs influencing the surface area (SA) and thickness
(T) of 34 brain cortical regions (June 2020 release), recently
analyzed in a GWAS involving 33,992 participants of
European ancestry [74]. We tested PGSs (at p < 0.05 in the
training GWAS) of both SA and T of all the cortical regions
adjusted for global measures (total SA and average T,
respectively), both separately and jointly in a multivariable
setting. This choice was motivated by the fact that different
structural alterations have been described in dyslexic sub-
jects [75] and a complex brain network of different struc-
tures is thought to underlie dyslexia phenotypes and related
skills [76]. To insure against potential overfitting bias in a
conventional ordinary least squares regression with a high
number of predictors, we applied two alternative multi-
variable models. First, a stepwise regression through the
stepaic() function of the MASS package, which retains only
variables associated with a decrease in the Akaike infor-
mation criterion, representing a trade-off between goodness-
of-fit and parsimony of the model. Then, an elastic net
regression, using the glmnet and caret packages, as in [77].
To this end, we divided our dataset into a random training
and test set (80:20 ratio), then trained the elastic net and
carried out hyperparameter (α and λ) tuning in the training
set, with tenfold cross-validation. Finally, we tested the

performance of the optimized model, assessing classifica-
tion accuracy in the independent test set (N= 1690). All the
models involving cortical PGSs were adjusted for MDS
components and sex, as explained above. For this analysis,
we considered associations as statistically robust only if
they showed significant and similar effect sizes across the
different models tested (using a significance threshold α=
8.3 × 10−4, correcting for 60 independent cortical measures,
as in [74]).

Results

Single-variant genome-wide associations

No single-variant association with DD reached genome-
wide significance (Figs. 1 and S1). The strongest single-
variant associations detected in the GWAS are reported in
Table 2 (p < 5 × 10−7) and, more extensively, in Table S2a
(p < 10−5). The top hit was detected at rs6035856 (G/T,
MAF= 0.45; p= 9.9 × 10−8), an intronic variant located
within the gene LOC388780 (chr20p13; Fig. 2a). Following
logistic mixed modelling and inverse variance-based meta-
analysis of the rs6035856 association, we computed an OR
[confidence interval] of 1.27[1.16; 1.39] for the major allele
G (p= 3.2 × 10−7). In all datasets, the major allele G was
associated with increased DD risk (Fig. 2b and Table S2b).
Although this SNP was not directly genotyped, it showed
high quality imputation statistics across datasets (INFO
metric in the range 0.89–0.95). Other SNPs in the vicinity
of rs6035856 were also associated with DD (see Table 2)
and were all in moderate/high LD with the top hit (r2 > 0.6;
see Fig. 2a).

Gene- and pathway-based enrichment analyses

Gene-level analysis of genome-wide single-variant asso-
ciation signals with DD revealed two significant enrich-
ments, after correcting for the 18,013 genes tested across the
genome (p < 2.8 × 10−6; Table S2c). These enrichments
were observed for the gene VEPH1 (ventricular zone
expressed PH domain-containing 1; 3q25; Z= 5.63;
permutation-based p= 8 × 10−8) and for the gene
LOC388780, where top GWAS variant mapped to (Z=
5.26; p= 1.7 × 10−7). However, the analysis of 1329
canonical pathways from the MSigDB website did not
reveal any significant enrichment (Table S2d).

SNP-based heritability

We computed the SNP-based heritability (h2SNP) of DD
through LD score regression, using the summary statistics
of HapMap 3 SNPs analysed in the GWAS. This analysis
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yielded an estimate of h2SNP (SE)= 0.19(0.06) on the
observed scale, while, on the liability scale, we observed
h2SNP (SE) of 0.20(0.06) (assuming a dyslexia prevalence of
0.05) and of 0.25(0.08) (for prevalence 0.1; see Table S3a).

We next computed partitioned heritability for different
functional categories in the genome, through stratified LD
score regression. The analysis of 53 overlapping functional
annotation categories in the baseline model (i.e., including
functional annotations irrespective of the cell type)
revealed no statistically significant enrichments of herit-
ability for such general annotation classes (see Table S3b).
Similarly, the stratified LD score regression applied to
annotations specific to CNS cell types detected no sig-
nificant contribution to SNP-based heritability of the four
histone marks tested (H3K4me1, H3K4me3, H3K9ac, and
H3K27ac; Table S3c). When we analysed partitioned her-
itability by sets of specifically overexpressed genes in 13
different brain regions available in the GTEx database (see
“Methods” section), we observed no significant contribu-
tions to h2SNP surviving correction for multiple testing
(Table S3d).

Polygenic scores and dyslexia risk

We report in Table 3 the results of the main PGS analysis on
neuropsychiatric disorders, intelligence and educational
attainment, including only variants with association p < 0.05
in the training GWAS (i.e. at pT= 0.05), while the results at
the different association significance (pT) thresholds tested
are reported in Table S4a–h. At pT= 0.05, glm logistic
regressions revealed that standardized PGS of EDUyears
and fluid intelligence were significantly associated with
dyslexia risk in our sample, surviving correction for mul-
tiple testing, with OR= 0.86[0.82; 0.91] (R2= 0.39%; p=

1.95 × 10−7) and 0.72[0.68; 0.76] (1.79%; 9.40 × 10−29),
respectively. Also, we observed significant associations
with dyslexia risk for three of the neuropsychiatric disorders
analyzed: ADHD (1.23[1.16; 1.3]; 0.73%; 7.66 × 10−13),
BD (1.53[1.44; 1.63]; 2.80%; 1.33 × 10−43) and SCZ (1.36
[1.28; 1.45]; 1.35%; 3.65 × 10−22). Similarly, we identified
a significant association with common genetic liability
shared across different psychiatric disorders (1.23 [1.16;
1.30]; 0.69%; 3.12 × 10−12). These associations were con-
cordant across all tested significance thresholds, and p
values decreased when more inclusive criteria were used
(i.e., for pT ranging between 0.1 and 1, see Table S4a–h).

The analysis of PGS for SA and T of 34 brain cortical
regions revealed an association of the transverse temporal
gyrus T with prevalent DD risk, which remained significant
after correction for multiple testing (OR= 0.90[0.86; 0.96];
p= 4.53 × 10−4; Table S4i). This association was confirmed
in a multivariable setting, both in stepwise (0.90[0.85;
0.95]; p= 2.45 × 10−4; Table S4j) and in elastic net
regression (OR= 0.92; Table S4k). However, the variance
explained by this PGS was low (0.17% in univariate
regression) and all the cortical PGS selected in elastic net
regression jointly conferred only a modest gain in dyslexic
classification accuracy, compared to the null model
including only covariates (0.4%).

Discussion

To the best of our knowledge, the present work reports the
largest case-control GWAS study conducted on dyslexia to
date, involving 2274 DD cases and 6272 controls from nine
different populations of European ancestry, speaking six
different languages.

Fig. 1 Manhattan plot of the
GWAS pooled analysis. The
blue and red line represent the
genome-wide (α= 5 × 10−8) and
suggestive significance (α= 1 ×
10−5) threshold.
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We identified a suggestive association at rs6035856
(p~10−8), an intronic variant located within the gene
LOC388780 (20p13), ~400 bp downstream of exon 1. This
small (~6 kb) gene encodes a non-coding RNA which has
not been functionally characterized yet, but is expressed in
different organs, including the CNS [52]. Gene-based
association testing supported the implication of
LOC388780 in DD genetic risk, showing a genome-wide
significant enrichment of associations for this gene. Based
on the Roadmap Epigenome 25-state model using 12
imputed marks, this region is classified as a Promoter
Upstream Transcription Start Site (2_PromU chromatin
state) in several brain cell types, including those from
middle hippocampus, anterior caudate, cingulate gyrus,
inferior frontal lobe, and dorsolateral prefrontal cortex [78],
suggesting potential roles in transcriptional regulation.

Gene-based analysis also detected significant evidence of
enrichment for the gene VEPH1 (ventricular zone expressed
PH domain-containing 1; 3q25), coding for a partly char-
acterized protein which promotes brain development [79],
probably through regulation of the TGF-β signalling path-
way [80]. However, we did not observe any significant
enrichment of associations for TGF-β-related pathways.

The analysis of SNP-based heritability indicated that
20–25% of the total variance in DD could be explained by
common variants in our dataset. This estimate is lower than
typical heritability estimates for dyslexia provided by twin
studies (40–60%) [2]. As with other complex traits, the
discrepancy between twin- and SNP-based heritability
suggests that part of dyslexia risk may be due to the genetic
effects of variants other than SNPs, such as common copy
number (CNVs) and rare variants. Although the relationship
of CNVs and rare variants with DD and reading-related
traits has not been extensively investigated to date, this
hypothesis is partly supported by some recent findings.
First, rare CNVs have often been implicated in familial
forms of dyslexia [81] and the candidate gene DYX1C1 was
first identified through a rare chromosomal rearrangement
which co-segregated with dyslexia in a Finnish family [82].
Similarly, a targeted high-throughput sequencing study of
96 reading-impaired subjects reported an excess of puta-
tively damaging rare variants in the candidate susceptibility
loci DYX2 and CCDC136/FLNC [83]. Second, CNVs
associated with neuropsychiatric disorders showed a sig-
nificant influence on different cognitive traits in a large
Icelandic population-based sample (N~102,000) [84]. In
particular, a recurrent deletion of 15q11.2 was associated
with a history of dyslexia and dyscalculia [84] and, in a later
study, with cognitive, structural, and functional correlates of
these impairments [85]. Third, a study reported >50% of the
heritability of general cognition (IQ) and educational
attainment (EduYears) to be explained by genetic variants
in low LD with SNPs commonly genotyped on microarrays,Ta
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Fig. 2 Details of the genome-wide top hit rs6035856. a Local
association and b forest plot of the genome-wide top variant
(rs6035856). The forest plot shows the odds ratio (OR) and 95%
confidence intervals (CI) on the x-axis, by dataset and for the pooled
analysis. Detailed OR statistics can be found in Table S2b. Note to
forest plot: the sibling-based dataset ENall1 was analyzed genome-
wide through linear mixed modelling (in FastLMM) for computational

reasons, while its OR, as shown here, was computed via a Wald test in
a logistic mixed model (GMMAT), to make it comparable to the other
ORs produced through logistic regression (PLINK). Hence, the result
of the pooled analysis—which here was performed through the inverse
variance-based method—is slightly discrepant from the original
genome-wide analysis (see Table 2).

Table 3 Results of the polygenic score (PGS) analysis for the different training traits/disorders tested.

Trait/disorder PGS OR [95% CI] R2 (%) p Training GWAS (Reference) Training GWAS N (cases/controls)

ADHD 1.23 [1.16; 1.3] 0.73 7.66× 10−13 [67] 53,293 (19,099/34,194)

ASD 1.01 [0.96; 1.07] <0.01 0.69 [68] 46,351 (18,382/27,969)

BD 1.53 [1.44; 1.63] 2.80 1.33× 10−43 [66] 51,710 (20,352/31,358)

MDD 1.01 [0.95; 1.06] <0.01 0.83 [70] 500,199 (170,756/329,443)

SCZ 1.36 [1.28; 1.45] 1.35 3.65× 10−22 [69] 77,096 (33,640/43,456)

Cross-Disorder 1.23 [1.16; 1.30] 0.69 3.12 × 10−12 [61] 438,997 (162,151/276,846)

EduYears 0.86 [0.82; 0.91] 0.39 1.95 × 10−7 [63] 766,345

Intelligence 0.72 [0.68; 0.76] 1.79 9.40 × 10−29 [62] 269,867

We report odds ratios (OR) for dyslexia with 95% confidence intervals (95% CI) per standardized PGS in our dataset, along with relevant R2 and p
values, at pT= 0.05 in the training GWAS. Full results for the different pT thresholds tested are reported in Table S4a–h. Statistically significant
associations (p < 4.5 × 10−4) are highlighted in bold.

ADHD attention deficit hyperactivity disorder, ASD autism spectrum disorder, MDD major depressive disorder, BD bipolar disorder, SCZ
schizophrenia, CROSS-DISORDER shared genetic basis of ADHD, ASD, BD, MDD, SCZ, anorexia nervosa, obsessive-compulsive disorder and
Tourette syndrome based on the GWAS meta-analysis by the Cross-Disorder Group of the Psychiatric Genomics Consortium [61], EduYears years
of education completed.
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especially rare variants. Indeed, SNP-based heritability of
these traits approached the total heritability estimates from
previous studies, when including also rare variants [86].
This suggests a substantial contribution of rare genetic
variants to individual differences in intelligence and edu-
cation, which may also extend to correlated cognitive traits
such as reading ability.

PGS analyses revealed several significant associations
between dyslexia risk and genetic liability to psychiatric
disorders and other correlates.

First, we observed that PGSs for educational attainment
and fluid intelligence were significantly associated with DD
in our sample, in line with previous studies [30, 72, 87].
Luciano et al. [87] observed that PGSs of word reading,
nonword repetition, and reading–spelling from GWAS
studies of ~6600 children from UK and Australia showed
significant positive associations with both verbal-numerical
reasoning and educational attainment (college or university
degree) in the UK Biobank cohort. Similarly, a PGS based
on EduYears accounted for 2–5% of the variance in reading
efficiency and comprehension in an independent UK sample
(N= 5825) [72]. In the same study, Selzam et al. reported a
PGSs of childhood general cognitive ability and adult
verbal-numerical reasoning to explain a small but sig-
nificant proportion (0.1–1.1%) of the variance in reading
efficiency and comprehension at several developmental
stages [72]. We later replicated these findings in a GWAS of
reading-related cognitive skills partly overlapping with the
present study (Nmax= 3468), extending the evidence of
genetic overlap to cognitive predictors of dyslexia risk like
phoneme awareness and digit span [28]. More recently, a
GWAS of word reading in 4430 US children presenting in
hospitals/clinics provided a further replication, reporting
higher fractions of variance explained by EduYears (18%)
and intelligence PGSs (7%) [30]. Together, the various
PGS-based studies strongly support the existence of shared
genetic factors influencing educational attainment, general
cognition, and more specialized abilities like reading [88].

Second, genetic liability to ADHD was significantly
associated with an increased DD risk, explaining 0.73% of
its variance (at pT= 0.05). This finding is in line with the
hypothesis of shared genetic bases between these disorders,
initially suggested by twin studies [54, 56], and with evi-
dence of genomic overlap reported for ADHD and the key
cognitive features of dyslexia in our previous GWAS [28].
Recently, Price et al. [30] replicated the inverse association
between ADHD-PGS and word reading in US children,
as did Verhoef et al. [89] in a British longitudinal cohort
(Nmax= 5919) for reading accuracy/comprehension at age
7, reading and spelling accuracy at age 9.

Third, we detected genetic links between two other
neuropsychiatric disorders—BD and SCZ—and dyslexia.
Standardized BD- and SCZ-PGS were associated with an

increased DD risk, explaining 2.8% and 1.4% of its var-
iance, respectively. Comorbidity of DD with a number of
psychiatric disorders—including also BD and SCZ—has
been previously reported [59, 60], and siblings of dyslexic
subjects showed a high relative risk of being affected by
ADHD, BD, SCZ, depression and autism, among others
[59]. Although no significant associations between a SCZ-
PGS and continuous reading-related traits were observed in
a smaller independent dataset [87], the association between
SCZ genetic risk and DD is in line with the reported genetic
influence of SCZ risk variants on reading problems in the
general population [84]. To the best of our knowledge, no
evidence of a common genetic basis for BD and reading
difficulties has been reported so far, although shared
familial (and potentially genetic) risks have been previously
suggested [59, 90]. Of note, we detected no significant
associations between MDD-/ASD-PGS and dyslexia, but
we did observe this for psychiatric cross-disorder genetic
liability. These findings open up new scenarios in psy-
chiatric genetics, suggesting a shared genetic and biological
foundation across many different neurodevelopmental and
neuropsychiatric conditions of phenotypically and clinically
different nature.

Finally, the analysis of PGS influencing different brain
cortical regions revealed a small, but robust and sig-
nificant, protective effect against DD risk for a PGS
increasing thickness of the transverse temporal gyrus. This
region, also known as Heschl’s gyrus, is located within the
primary auditory cortex—which is fundamental for audi-
tory discrimination and speech perception [91]—and has
been previously implicated in dyslexia by neuroimaging
evidence, although not always consistently across studies
[92–95]. Moreover, it overlaps with the left perisylvian
regions where Galaburda et al. detected neuronal ectopias
in four post-mortem dyslexic brains [96]. Here, we provide
evidence of a genetic overlap between dyslexia risk and
potential brain structural features proposed from non-
genetic studies, although caution is suggested in the
interpretation of these findings due to the inconsistencies
across neuroimaging studies and to the potential role of
regional brain asymmetries in the measures analyzed,
which here were not taken into account due to the una-
vailability of GWAS summary statistics for separate
hemispheres [75].

In spite of strengths like the wealth of cohorts and lan-
guages analyzed, and a relative homogeneity of recruitment,
phenotypic assessment, and QC procedures, the present
study also shows some limitations. In particular, there was a
non-optimal case:control ratio in some datasets and a lack of
properly screened controls in the English-speaking datasets.
Although we acknowledge these would be preferred to
improve power, the use of unscreened population controls is
common where large numbers are needed, and has been
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exploited elsewhere [38, 39, 97]. Indeed, while for very
common diseases the use of unscreened controls may
notably affect power, for less common disorders/statuses
(with prevalence <0.2) the loss of power is reduced and
counterbalanced by the larger sample size which can be
achieved through the use of unscreened populations [98].
Also, the PGS approach is based on the assumption that
population structure and other possible confounds are well
controlled in the training and target GWAS, which we
implemented by adjusting all analyses for sex and genetic
ancestry. However, independent replication of these results
is warranted to substantiate the novel findings coming from
the PGS analysis. Moreover, although the present study
represents to our knowledge the largest GWAS on dyslexia
to date [98], its sample size is relatively low compared to
other studies in the neuropsychiatric field [66–70], which
limited the power of analyses. Larger collaborative efforts
are being implemented to improve these aspects to further
enlighten the genetic epidemiology of dyslexia.

URLs
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